Spectral geometry of symmetric spaces
نویسندگان
چکیده
منابع مشابه
Geometry Of Weakly Symmetric Spaces
Weakly symmetric spaces are particular Riemannian homogeneous spaces which have been introduced by Selberg [21] in 1956 in the framework of his trace formula. They attracted only little interest until the author and Vanhecke [7] found a simple geometric characterization of weakly symmetric spaces which lead to a large number of new examples. The purpose of this note is to present a survey about...
متن کاملThe Geometry of -adic Symmetric Spaces
1120 NOTICES OF THE AMS VOLUME 42, NUMBER 10 M any of the geometric objects of interest to number theorists arise as quotients of classical symmetric spaces by discrete subgroups of Lie groups. For example, the Riemann surfaces known as “modular curves”, which play a central role in Wiles’s proof of Fermat’s Last Theorem, are the quotients of the upper half plane by certain arithmetically defin...
متن کاملThe Geometry of Grauert Tubes and Complexification of Symmetric Spaces
We study the canonical complexifications of non-compact Riemannian symmetric spaces by the Grauert tube construction. We determine the maximal such complexification, a domain already constructed by Akhiezer and Gindikin [1], and show that this domain is Stein. We also determine when invariant complexifications, including the maximal one, are Hermitian symmetric. This is expressed simply in term...
متن کاملGeneralized Symmetric Berwald Spaces
In this paper we study generalized symmetric Berwald spaces. We show that if a Berwald space $(M,F)$ admits a parallel $s-$structure then it is locally symmetric. For a complete Berwald space which admits a parallel s-structure we show that if the flag curvature of $(M,F)$ is everywhere nonzero, then $F$ is Riemannian.
متن کاملL spectral theory and heat dynamics of locally symmetric spaces
In this paper we first derive several results concerning the L spectrum of arithmetic locally symmetric spaces whose Q-rank equals one. In particular, we show that there is an open subset of C consisting of eigenvalues of the L Laplacian if p < 2 and that corresponding eigenfunctions are given by certain Eisenstein series. On the other hand, if p > 2 there is at most a discrete set of real eige...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Transactions of the American Mathematical Society
سال: 1977
ISSN: 0002-9947
DOI: 10.1090/s0002-9947-1977-0423258-3